On Fundamental Solutions in Clifford Analysis

نویسندگان

  • F. Brackx
  • H. De Schepper
  • M. Shapiro
چکیده

Euclidean Clifford analysis is a higher dimensional function theory offering a refinement of classical harmonic analysis. The theory is centred around the concept of monogenic functions, which constitute the kernel of a first order vector valued, rotation invariant, differential operator ∂ called the Dirac operator, which factorizes the Laplacian. More recently, Hermitean Clifford analysis has emerged as a new branch of Clifford analysis, offering yet a refinement of the Euclidean case; it focusses on a subclass of monogenic functions, i.e. the simultaneous null solutions, called Hermitean (or h–) monogenic functions, of two Hermitean Dirac operators ∂z and ∂z† which are invariant under the action of the unitary group, and constitute a splitting of the original Euclidean Dirac operator. In Euclidean Clifford analysis, the Clifford–Cauchy integral formula has proven to be a corner stone of the function theory, as is the case for the traditional Cauchy formula for holomorphic functions in the complex plane. Also a Hermitean Clifford–Cauchy integral formula has been established by means of a matrix approach. Naturally Cauchy integral formulae rely upon the existence of fundamental solutions of the Dirac operators under consideration. The aim of this paper is twofold. We want to reveal the underlying structure of these fundamental solutions and to show the particular results hidden behind a formula such as e.g. ∂E = δ. Moreover we will refine these relations by constructing fundamental solutions for the differential operators issuing from the Euclidean and Hermitean Dirac operators by splitting the Clifford algebra product into its dot and wedge parts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 9 Ju l 2 00 7 Fundamental solutions for the super Laplace and Dirac operators and all their natural powers

The fundamental solutions of the super Dirac and Laplace operators and their natural powers are determined within the framework of Clifford analysis. MSC 2000 : 30G35, 35A08, 58C50

متن کامل

Spherical harmonic polynomials for higher bundles

We give a method of decomposing bundle-valued polynomials compatible with the action of the Lie group Spin(n), where important tools are Spin(n)-equivariant operators and their spectral decompositions. In particular, the top irreducible component is realized as an intersection of kernels of these operators. 0 Introduction Spherical harmonic polynomials or spherical harmonics are polynomial solu...

متن کامل

Clifford-Fischer theory applied to a group of the form $2_{-}^{1+6}{:}((3^{1+2}{:}8){:}2)$

‎In our paper [A‎. ‎B‎. ‎M‎. ‎Basheer and J‎. ‎Moori‎, ‎On a group of the form $2^{10}{:}(U_{5}(2){:}2)$] we calculated the inertia factors‎, ‎Fischer matrices and the ordinary character table of the split‎ ‎extension $ 2^{10}{:}(U_{5}(2){:}2)$ by means of Clifford-Fischer‎ ‎Theory‎. ‎The second inertia factor group of $2^{10}{:}(U_{5}(2){:}2)$‎ ‎is a group of the form $2_{-}^{1+6}{:}((3^{1+2}{...

متن کامل

On the Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly

The non-split extension group $overline{G} = 5^3{^.}L(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in Ly. The group $overline{G}$ in turn has L(3,5) and $5^2{:}2.A_5$ as inertia factors. The group $5^2{:}2.A_5$ is of order 3 000 and is of index 124 in L(3,5). The aim of this paper is to compute the Fischer-Clifford matrices of $overline{G}$, which together with associated parti...

متن کامل

On the Fischer-Clifford matrices of the non-split extension $2^6{{}^{cdot}}G_2(2)$

The group $2^6{{}^{cdot}} G_2(2)$ is a maximal subgroup of the Rudvalis group $Ru$ of index 188500 and has order 774144 = $2^{12}.3^3.7$. In this paper, we construct the character table of the group $2^6{{}^{cdot}} G_2(2)$ by using the technique of Fischer-Clifford matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010